|
1.2 Weitere Eigenschaften von Funktionen und deren Graphen
Die neuen Begriffe und Verfahren werden bei verschiedenen Fragestellungen angewandt, insbesondere bei solchen, die eine geometrische Deutung der Integralfunktion erfordern. Dabei greifen die Schüler auch die bereits bekannten Zusammenhänge zwischen den Graphen von Funktion und Ableitungsfunktion wieder auf.
Beispielsweise beim Erschließen des Verlaufs des Graphen einer Integralfunktion aus dem der Integrandenfunktion und aus deren Ableitung lernen die Schüler neben der Monotonie nun auch die Krümmung als Eigenschaft von Graphen kennen. Sie untersuchen das Krümmungsverhalten an Beispielen bisher bekannter Funktionstypen.
|