|
3. Geraden und Ebenen im Raum
Aufbauend auf dem ihnen bereits bekannten Rechnen mit Vektoren lernen die Schüler zur analytischen Beschreibung von Geraden und Ebenen im Raum Gleichungen in Parameterform kennen und deuten die lineare Abhängigkeit bzw. lineare Unabhängigkeit von Vektoren anschaulich. Sie arbeiten mit der Ebenengleichung in Normalenform, die sich bei Abstandsberechnungen und Lagebetrachtungen als vorteilhaft erweist. Bei Schnittproblemen vertiefen sie ihr Wissen über lineare Gleichungssysteme aus der Mittelstufe. Die Schüler veranschaulichen in Schrägbildern die Lage von Geraden und Ebenen und untersuchen Eigenschaften von Körpern. Dabei wird ihnen erneut bewusst, dass manche Aufgabenstellungen sowohl mit Methoden der analytischen Geometrie als auch mit den aus der Mittelstufe bekannten Verfahren gelöst werden können.
|