UHU-StartseiteMathematikJahrgangsstufen11Globales DifferenzierenAbleitung ganzrationaler Funktionen, Summenregel
Ableitung von Potenzfunktionen


Vorerst sollen nur Potenzfunktionen mit natürliche Exponenten untersucht werden.


Ableitung von `x^1=x`
`f(x) = x` (eine Gerade mit Steigung 1)

`f'(x) = lim_(h->0) (f(x+h)-f(x))/h = lim_(h->0)(x+h - x)/h = lim_(h->0) h/h = lim_(h->0) 1 = 1`

`f(x) = x^1 => f'(x) = 1`



Ableitung von `x^2`
`f(x) = x^2` (Normalparabel)

`f'(x) = lim_(h->0) (f(x+h)-f(x))/h = lim_(h->0) ((x+h)^2-x^2)/h = lim_(h->0) (2xh+h^2)/h = lim_(h->0) 2x + h = 2x`

`f(x) = x^2 => f'(x) = 2*x`



Ableitung von `x^3`
`f(x) = x^3`

`f'(x) = lim_(h->0) (x^3 + 3 x^2 h + 3 x h^2 + h^3 - x^3)/ h = lim_(h->0) 3 x^2 + 3 x h + h^2 = 3 x^2`

`f(x) = x^3 => f'(x) = 3*x^2`



Ableitung von `x^n`
Vermutung: `f(x) = x^n => f'(x) = n*x^(n-1)`

Beweis:

`lim_(h->0) ((x+h)^n-x^n)/h = lim_(h->0)(x^n+n*x^(n-1)*h+...*h^2+...+h^n-x^n)/h = `

`= lim_(h->0)(n*x^(n-1)*h+...*h^2+...+h^n)/h = lim_(h->0) n*x^n-1 + h*... = n*x^(n-1)`

`f(x) = x^n => f'(x) = n*x^(n-1)`


optimal sichtbar mit Firefox Formeln mit asciimath Druckversion