|
2. Koordinatengeometrie im Raum
Die Schüler festigen ihre geometrischen Kenntnisse in anspruchsvolleren räumlichen Betrachtungen. In geeignet gewählten dreidimensionalen kartesischen Koordinatensystemen stellen sie Punkte sowie Körper dar und arbeiten mit Vektoren im Anschauungsraum – auch unter Verwendung der zugehörigen Koordinatenschreibweise. Beim Zeichnen geometrischer Körper im Schrägbild festigen die Jugendlichen ihr räumliches Vorstellungsvermögen und entwickeln ihre Vorstellung von Lagebeziehungen im Raum weiter.
Fragen der Längen- und Winkelmessung führen die Schüler zum Skalarprodukt von Vektoren und dessen Anwendungen; dabei lernen sie auch, Gleichungen von Kugeln in Koordinatenform zu formulieren. Die Jugendlichen erkennen, dass zur Bestimmung von orthogonalen Vektoren das Vektorprodukt vorteilhaft eingesetzt werden kann. Der praktische Nutzen von Skalar- und Vektorprodukt wird ihnen auch bei der Ermittlung von Flächeninhalten und Volumina geeigneter geometrischer Objekte deutlich. Bei der Beschreibung und Untersuchung geometrischer Figuren und Körper sind die Schüler nun in der Lage, sowohl auf die Vektorrechnung als auch auf grundlegende Verfahren aus der Mittelstufe zurückzugreifen.
|