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1. a) Die Richtungsvektoren der beiden Geraden sind nicht linear abhangig, d. h.

sie spannen bereits eine Ebene auf; deshalb kann man den Normalenvektor
der gesuchten Ebene aus dem Kreuzprodukt dieser beiden Vektoren bestim-
men:
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2 |x| 0|=]| -4 |=1i=]| -2 | Die Ebenengleichung ist also soweit
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festgelegt:

H:x;—-2x,-2x3+c=0
A muss in der Ebene liegen:

1+6+6+c=0=>c=-13V

Die Verbindungslinie von C zum FufSpunkt muss senkrecht auf dem Rich-
tungsvektor der Geraden stehen:
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A1 -2+41-8+1+1=0

9A-9=0=>71=1
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Zu zeigen, dass BC | H:
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Aeinsetzen: 2-1-1-(=3)+2-(-3)+1=2+3-6+1=0v
B einsetzen: 2-2-1+2-(-2)+1=4-1-4+1=0v

Ceinsetzen: 2-3-1-(-1)+2-(-4)+1=6+1-8+1=0v
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AD ist also linear abhangig zum Normalenvektor, steht also senkrecht auf E;.

Fur die weiteren Koordinaten ist jeweils AD an die Punkte B und C anzuset-
zen:
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Die Deckfliche muss parallel zur Grundflache verlaufen, also besitzt sie den
gleichen Normalenvektor. Auflerdem muss sie den Punkt D enthalten:

2.5—(=5)+2- 1+, =0=> ¢y =17

cA|=V22+ 27417 =3
|CB| = V2727517 =3
V = G-h Da A auf der Geraden g liegt und C der Fulpunkt des Lotes von

B auf diese Gerade, ergibt sich mit ABC ein gleichschenklig rechtwinkliges
Dreieck. Daher gilt:



G=1|cA||CB|=1-3-3=4,5
h=|Ab|= Va2 422+ 47 = 6

=V =4,56=27

Einer der Teilkorper ist die Pyramide ABCF. Diese Pyramide besitzt die gleiche
Grundfldche ABC und die gleiche Hohe |AD| wie das Prisma. Sein Volumen
entspricht daher einem Drittel des Prismas: V = %Vp =9

Daher verhalten sich die Volumina der Teilkorper 1:2.

Erste Moglichkeit: Halbierung auf halber Hohe.
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Ein Punkt dieser Ebene wire M = %(Z+ 5) = % -8 |=| -4
-2 -1

Die passende Ebene Ej ist ebenfalls parallel zu E; und E,, daher muss c3 durch
Einsatz von M bestimmt werden:

2.3-(-4)+2-(-1)+c3=0=>c3=-8
E312X1—X2+2X3—8:0

Zweite Moglichkeit: die Symmetrieebene des Prismas

(geht durch C und F und steht senkrecht auf AB und DE und halbiert diese
Strecken).
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Bestimmung von ¢4 durch den Punkt C:

3—-4-4+4+c4=0>c4=5=E4:x1+4x,+x3+5=0



